ECE 307 - Techniques for Engineering Decisions

Lecture 5. Networks and Flows

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

NETWORKS AND FLOWS

- A network is a system of lines or channels or branches that connect different points

Examples abound in nearly all aspects of life:
O electrical systems;
O communication networks;
O airline webs;
O local area networks; and
O distribution systems

NETWORKS AND FLOWS

\square The network structure is also common to many other systems that at first glance are not necessarily viewed as networks

O distribution of products through a system consisting of manufacturing plants, warehouses and retail outlets

O matching problems such as work to people, tasks to machines and computer dating

[^0]
NETWORKS AND FLOWS

O river systems with pondage for electricity generation

O mail delivery networks
O freight delivery networks
O project management of multiple tasks in a large undertaking such as a major construction project or a space flight
\square We consider a broad range of network and network flow problems

THE TRANSPORTATION PROBLEM

The basic idea of the transportation problem is
illustrated with the problem of the distribution of a
specified homogeneous product from several ware-
houses to a number of localities at least cost
\square We consider a system with m warehouses, n markets and links between them with the specified
costs of transportation
ECE 307© 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE TRANSPORTATION PROBLEM

słวчири

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE TRANSPORTATION PROBLEM

O all the supply comes from the m warehouses;
we associate the index $i=1,2, \ldots, m$ with a warehouse

O all the demand is at the n markets; we associate the index $j=1,2, \ldots, n$ with a market

O shipping costs $c_{i j}$ for each unit from the warehouse i to the market j

THE TRANSPORTATION PROBLEM

\square The transportation problem is to determine the
optimal shipping schedule that minimizes shipping
costs from the set of m warehouses to the set of
n markets by determining the quantities shipped
from each warehouse i to each market j,
$i=1,2, \ldots, m, j=1,2, \ldots, n$

LP FORMULATION OF THE TRANSPORTATION PROBLEM

\square The decision variables are defined to be

$x_{i j}=q u a n t i t y ~ s h i p p e d ~ f r o m ~ w a r e h o u s e ~ i t o ~ m a r k e t ~ j$,

$$
i=1,2, \ldots, m, \quad j=1,2, \ldots, n
$$

The objective function is

$$
\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

LP FORMULATION OF THE TRANSPORTATION PROBLEM

\square The constraints are:

$$
\sum_{j=1}^{n} x_{i j} \leq a_{i} \quad i=1,2, \ldots, m
$$

$$
\sum_{i=1}^{m} x_{i j} \geq b_{j} \quad j=1,2, \ldots, n
$$

$$
x_{i j} \geq 0 \quad i=1,2, \ldots, m, \quad j=1,2, \ldots, n
$$

LP FORMULATION OF THE TRANSPORTATION PROBLEM

Note that feasibility requires that

$$
\sum_{i=1}^{m} a_{i} \geq \sum_{j=1}^{n} b_{j}
$$

\square When

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

all available supply at the m warehouses is shipped to meet all the demands of the n markets; this is known as the standard transportation problem

STANDARD TRANSPORTATION PROBLEM (STR)

$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}$
sot.

$$
\left.\left.\left.\begin{array}{rl}
\sum_{j=1}^{n} x_{i j} & =a_{i} \\
\sum_{i=1}^{m} x_{i j} & =b_{j} \\
x_{i j} & \geq 0
\end{array}\right\} \quad \begin{array}{l}
i=1, \ldots, m \\
\end{array}\right\} \quad \begin{array}{l}
\\
\end{array}\right\}
$$

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STANDARD TRANSPORTATION PROBLEM (STP)

\square The standard transportation problem has
Omn variables $\boldsymbol{x}_{\boldsymbol{i j}}$
$O m+n$ equality constraints
\square However, since

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}=\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

there are at most ($m+n-1$) independent constraints and consequently at most (m+n-1) independent variables $x_{i j}$ (basic variables)

TRANSPORTATION PROBLEM EXAMPLE

	M_{1}	M_{2}	M_{3}	M_{4}	supplies
W_{1}	$\begin{aligned} & X_{11} \\ & \quad \boldsymbol{c}_{11} \end{aligned}$	$\begin{aligned} & X_{12} \\ & C_{12} \end{aligned}$	$\begin{aligned} & X_{13} \\ & \quad C_{13} \end{aligned}$	$\begin{aligned} & X_{14} \\ & \quad c_{14} \end{aligned}$	a_{1}
W_{2}	$\begin{aligned} & \boldsymbol{X}_{21} \\ & \quad \boldsymbol{c}_{21} \end{aligned}$	$\begin{aligned} & \boldsymbol{x}_{22} \\ & \quad \boldsymbol{c}_{22} \\ & \hline \end{aligned}$	$\begin{aligned} & \boldsymbol{x}_{23} \\ & \quad \boldsymbol{c}_{23} \end{aligned}$	$\begin{aligned} & \boldsymbol{X}_{24} \\ & \quad \boldsymbol{c}_{24} \end{aligned}$	a_{2}
W_{3}	$\begin{aligned} & \boldsymbol{x}_{31} \\ & \quad \boldsymbol{c}_{31} \end{aligned}$	\boldsymbol{x}_{32} C_{32}	$\begin{aligned} & \boldsymbol{x}_{33} \\ & \quad \boldsymbol{c}_{33} \end{aligned}$	\boldsymbol{X}_{34} C_{34}	\boldsymbol{a}_{3}
demands	b_{1}	b_{2}	\boldsymbol{b}_{3}	b_{4}	$\sum a_{i}=\sum_{j} b_{j}$

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TRANSPORTATION PROBLEM NUMERICAL EXAMPLE

	M_{1}	M_{2}	M_{3}	M_{4}	a_{I}
W_{1}	2	2	2	1	3
W_{2}	10	8	5	4	7
W_{3}	7	6	6	8	5
b_{j}	4	3	4	4	

THE LEAST - COST RULE PROCEDURE

\square This procedure generates an initial basic feasible
solution which has at most ($m+n-1$) positive-
valued basic variables

The principal idea of the scheme is to select, at each step, the variable $x_{i j}$ with the lowest shipping
costs $c_{i j}$ as the next basic variable to enter the basis

APPLICATION OF THE LEAST - COST RULE

$\square c_{14}$ is the lowest $c_{i j}$ and we select x_{14} as a basic variable
\square We choose x_{14} as large as possible without violating any constraints:

$$
\min \left\{a_{1}, b_{4}\right\}=\min \{3,4\}=3
$$

\square We set $x_{14}=3$ and

$$
x_{11}=x_{12}=x_{13}=0
$$

\square We delete row 1 from any further consideration since all the supplies from W_{1} are exhausted

APPLICATION OF THE LEAST - COST RULE

	M_{1}	M_{2}	M_{3}	M_{4}	$\boldsymbol{a}_{\boldsymbol{i}}$
W_{1}				(3)	3
	2	2	2	1	
W_{2}					7
	10	8	5	4	
W_{3}					5
$b_{\text {j }}$	4	3	4	4	
b_{j}		3	4	4	

APPLICATION OF THE LEAST - COST RULE

\square The remaining demand at M_{4} is

$$
4-3=1
$$

which is the value for the modified demand at M_{4}
\square We again apply the criterion selection for the reduced tableau: since c_{24} is the lowest-valued $c_{i j}$, we select x_{24} as the next basic variable

APPLICATION OF THE LEAST - COST RULE

We wish to set x_{24} as large as possible without violating any constraints:

$$
\min \left\{a_{2}, b_{4}\right\}=\min \{7,1\}=1
$$

and we set $x_{24}=1$ and since there is no more
demand at M_{4}

$$
x_{34}=0
$$

We delete column 4 from any further consideration since all the demand at M_{4} is met

APPLICATION OF THE LEAST - COST RULE

\square The remaining supply at W_{2} is

$$
7-1=6,
$$

which is the value for the modified supply at W_{2}
\square We repeat these steps until we find the values of
the $(m+n-1)$ nonzero basic variables to obtain a basic feasible solution
\square In the reduced tableau,

APPLICATION OF THE LEAST - COST RULE

APPLICATION OF THE LEAST - COST RULE

O pick x_{23} to enter the basis as the next basic variable

O set
$x_{23}=\min \{6,4\}=4$
and set $x_{33}=0$
O eliminate column 3 and reduce the supply at
W_{2} to

$$
6-4=2
$$

\square For the reduced tableau

APPLICATION OF THE LEAST - COST RULE

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

APPLICATION OF THE LEAST - COST RULE

O pick x_{32} to enter the basis
O set

$$
x_{32}=\min \{3,5\}=3
$$

and set $x_{22}=0$
O eliminate column 2 in the reduced tableau and reduce the supply at W_{3} to

$$
5-3=2
$$

\square The last reduced tableau is

APPLICATION OF THE LEAST - COST RULE

APPLICATION OF THE LEAST - COST RULE

O pick x_{31} to enter the basis
O set

$$
x_{31}=\min \{2,4\}=2
$$

O reduce the demand at M_{1} to

$$
4-2=2
$$

O the value of

$$
x_{21}=2
$$

is obtained by default

INITIAL BASIC FEASIBLE SOLUTION

	M_{1}	M_{2}	M_{3}	M_{4}	$\boldsymbol{a}_{\boldsymbol{i}}$
W_{1}	2	2	2	3	3
W_{2}	$\begin{aligned} & 2 \\ & 10 \end{aligned}$	8	4	1	7
W_{3}	2 7	$\begin{aligned} & 3 \\ & \quad 6 \end{aligned}$	6	8	5
b_{j}	4	3	4	4	

APPLICATION OF THE LEAST - COST RULE

\square The feasible solution involves only the basic
variables and results in shipment costs of
$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{i j} x_{i j}=1 \cdot 3+4 \cdot 1+5 \cdot 4+6 \cdot 3+7 \cdot 2+10 \cdot 2$

$$
=79
$$

THE STP

The primal problem is

$$
\min Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

s.t.

$$
\begin{array}{rll}
u_{i} & \leftrightarrow & \sum_{j=1}^{n} x_{i j}=a_{i} \\
v_{j} & \leftrightarrow & i=1, \ldots, m \\
& & \sum_{i=1}^{m} x_{i j}=b_{j} \quad j=1, \ldots, n \\
& & x_{i j} \geq 0
\end{array}
$$

THE STP

\square The dual problem is

$$
\begin{align*}
& \max W=\sum_{i=1}^{m} a_{i} u_{i}+\sum_{j=1}^{n} b_{j} v_{j} \\
& \text { s.t. } \\
& \qquad \begin{array}{l}
x_{i j} \quad \leftrightarrow \quad u_{i}+v_{j} \leq c_{i j} \\
\\
\\
\qquad u_{i, v_{j}} \text { are unrestricted in sign }
\end{array} \tag{D}
\end{align*}
$$

THE STP

\square The complementary slackness conditions for (D) are

$$
\begin{array}{ll}
x_{i j}^{*}\left[u_{i}^{*}+v_{j}^{*}-c_{i j}\right]=0 & i=1, \ldots, m \\
& j=1, \ldots, n
\end{array}
$$

\square Due to the equalities in (P), the complementary
slackness conditions in (P) cannot provide any
useful information

THE TRANSPORTATION PROBLEM

\square The complementary slackness conditions obtain

$$
\begin{aligned}
& x_{i j}^{*}>0 \Rightarrow u_{i}^{*}+v_{j}^{*}=c_{i j} \\
& u_{i}^{*}+v_{j}^{*}<c_{i j} \Rightarrow x_{i j}^{*}=0
\end{aligned}
$$

We make use of these complementary slackness
conditions to develop the so-called $u-v$ method for solving the standard transportation problem

THE $u-v$ METHOD

The u-v method starts with a basic feasible solution
for the primal problem, determines the
corresponding dual variables (as if the basic feasible
solution were optimal) and uses the duals to
determine the adjacent basic feasible solution; the process continues until the optimality conditions are satisfied

THE $u-v$ METHOD

- For a basic feasible solution, we find the dual
variable u_{i} and v_{j} using the complementary
slackness conditions

$$
u_{i}+v_{j}=c_{i j}
$$

\forall basic $\boldsymbol{x}_{i j}$
with u_{i} and v_{j} being unrestricted in sign
ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE $u-v$ METHOD

\square We compute

$$
\tilde{c}_{i j}=c_{i j}-\left(u_{i}+v_{j}\right) \quad \forall \text { nonbasic } x_{i j}
$$

\square This step is the analogue of computing $\underline{\tilde{c}}^{T}$ in the simplex tableau approach (relative cost reduction vector)
\square The complementary-slackness-based optimality test is performed :
if $\quad \tilde{c}_{i j} \geq 0 \quad \forall$ nonbasic $x_{i j}\left[x_{i j}=0\right]$, then the basic feasible solution is optimal

THE $u-v$ METHOD

\square Otherwise, we consider all nonbasic variables $\boldsymbol{x}_{\bar{p} \bar{q}}$ that satisfy

$$
\tilde{c}_{\bar{p} \bar{q}}=c_{\bar{p} \bar{q}}-\left(u_{\bar{p}}+v_{\bar{q}}\right)<0
$$

and determine
\square We, then, select $x_{p q}$ to become the next basic variable and repeat the process for this new basic feasible solution and continue the process until the optimality conditions are met

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STP NUMERICAL EXAMPLE

We apply the $u-v$ scheme to the example
previously discussed

The basic step from the dual formulation is to
require

$$
\left(u_{i}+v_{j}\right)=c_{i j}
$$

\forall nonbasic $x_{i j}$

STP NUMERICAL EXAMPLE

We start with the basic feasible solution and apply the complementary slackness conditions

$$
\begin{aligned}
& u_{1}+v_{4}=1=c_{14} \\
& u_{2}+v_{4}=4=c_{24} \\
& u_{2}+v_{3}=5=c_{23} \\
& u_{3}+v_{2}=6=c_{32} \\
& u_{3}+v_{1}=7=c_{31} \\
& u_{2}+v_{1}=10=c_{21}
\end{aligned}
$$

\square We have 6 equations in 7 unknowns and so there is an infinite number of solutions

STP NUMERICAL EXAMPLE

\square Arbitrarily, we set

$$
v_{4}=0
$$

and solve the equations above to obtain

$$
\begin{aligned}
u_{1} & =1 \\
u_{2} & =4 \\
v_{3} & =1 \\
v_{1} & =6 \\
u_{3} & =1 \\
v_{2} & =5
\end{aligned}
$$

STP NUMERICAL EXAMPLE

\square The $\tilde{c}_{i j}$ for the nonbasic variables are

$$
x_{11}: \tilde{c}_{11}=c_{11}-\left(u_{1}+v_{1}\right)=2-(1+6)=-5
$$

$$
x_{12}: \tilde{c}_{12}=c_{12}-\left(u_{1}+v_{2}\right)=2-(1+5)=-4
$$

$$
x_{13}: \tilde{c}_{13}=c_{13}-\left(u_{1}+v_{3}\right)=2-(1+1)=0
$$

$$
x_{34}: \tilde{c}_{34}=c_{34}-\left(u_{3}+v_{4}\right)=8-(1+0)=7
$$

$$
x_{33}: \tilde{c}_{33}=c_{33}-\left(u_{3}+v_{3}\right)=6-(1+1)=4
$$

STP NUMERICAL EXAMPLE

\square We determine

$$
\tilde{c}_{p q}=\min _{\substack{\bar{p} q \boldsymbol{x} x_{\bar{i}} \\ \text { is nonbasic }}}=\tilde{c}_{11}=-5
$$

and consequently we pick the nonbasic variable x_{11}
to enter the basis

We determine the maximal value of x_{11} and set
$x_{11}=\theta$ and make use of the tableau
ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STP NUMERICAL EXAMPLE

w/h i market \boldsymbol{j}	M_{1}	M_{2}	M_{3}	M_{4}	a_{i}
W_{1}	θ			$3-\theta$	3
W_{2}	$2-\theta$		4	$1+\theta$	7
W_{3}	2	3		4	
b_{j}	4	3	4	4	

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STP NUMERICAL EXAMPLE

- Therefore,

$$
\theta=\min \{2,3\}=2
$$

\square Consequently, x_{21} becomes 0 and leaves the basis
\square We obtain the basic feasible solution

$$
x_{14}=1, x_{11}=2, x_{31}=2, x_{32}=3, x_{23}=4, x_{24}=3
$$

and repeat to solve the $u-v$ problem for this new
basic feasible solution

STP NUMERICAL EXAMPLE

market j w/h i	$v_{1}=2$	$v_{2}=1$	$v_{3}=2$	$v_{4}=1$	a_{i}
$u_{1}=0$	(2) 2	2	2	(1) 1	3
$u_{2}=3$	10	8	(4) 5	(3) 4	7
$u_{3}=5$	(2) 7	(3) 6	6	8	5
b_{j}	4	3	4	4	

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STP NUMERICAL EXAMPLE

\square The complementary slackness conditions of the

 nonzero valued basic variables obtain$$
\begin{aligned}
& u_{1}+v_{1}=c_{11}=2 \\
& u_{1}+v_{4}=c_{14}=1 \\
& u_{2}+v_{3}=c_{23}=5 \\
& u_{2}+v_{4}=c_{24}=4 \\
& u_{3}+v_{1}=c_{31}=7 \\
& u_{3}+v_{2}=c_{32}=6
\end{aligned}
$$

STP NUMERICAL EXAMPLE

- We set

$$
u_{1}=0
$$

and therefore

$$
\begin{array}{ll}
v_{3}=2 & v_{1}=2 \\
u_{3}=5 & u_{3}=5 \\
v_{2}=1 & v_{2}=0
\end{array}
$$

\square We compute $\tilde{c}_{i j}$ for each nonbasic variable $x_{i j}$

STP NUMERICAL EXAMPLE

$\tilde{c}_{12}=c_{12}-\left(u_{1}+v_{2}\right)=2-(0+1)=1$
$\tilde{c}_{13}=c_{13}-\left(u_{1}+v_{3}\right)=2-(0+2)=0$
$\tilde{c}_{21}=c_{21}-\left(u_{2}+v_{1}\right)=10-(3+2)=5$
$\tilde{c}_{22}=c_{22}-\left(u_{2}+v_{2}\right)=8-(3+1)=4$
$\tilde{c}_{33}=c_{33}-\left(u_{3}+v_{3}\right)=6-(5+2)=-14$
$\tilde{c}_{34}=c_{34}-\left(u_{3}+v_{4}\right)=8-(5+1)=2$
only possible improvement
\square We introduce x_{33} as a basic variable and determine its nonnegative value θ from the tableau

STP NUMERICAL EXAMPLE

market $\boldsymbol{j} \boldsymbol{i}$	M_{1}	M_{2}	M_{3}	M_{4}	a_{i}
W_{1}	$2+\theta$			$1-\theta$	3
W_{2}			$4-\theta$	$3+\theta$	7
W_{3}	$2-\theta$	3	θ		5
b_{j}	4	3	4	4	

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STP NUMERICAL EXAMPLE

\square The limiting value of θ is

$$
\theta=\min \{2,4,1\}=1
$$

Consequently, x_{14} leaves the basis and x_{33}
enters the basis with the value 1

We obtain the adjacent basic feasible solution in

STP NUMERICAL EXAMPLE

	$v_{1}=2$	$v_{2}=1$	$v_{3}=1$	$v_{4}=0$	a_{i}
$u_{1}=0$	(3) 2	2	2	1	3
$u_{2}=4$	10	8	(3) 5	(4) 4	7
$u_{3}=5$	(1) 7	(3) 6	(1) 6	8	5
b_{j}	4	3	4	4	

ECE 307@ 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STP NUMERICAL EXAMPLE

\square We evaluate $\tilde{c}_{i j}$ for each nonbasic variable;
$\tilde{c}_{i j} \geq 0$ and so we have an optimal solution with shipping 3 from W_{1} to M_{1} with costs 6 shipping 1 from W_{3} to M_{1} with costs 7 shipping 3 from W_{3} to M_{2} with costs 18 shipping 1 from W_{3} to M_{3} with costs 6 shipping 3 from W_{2} to M_{3} with costs 15 shipping 4 from W_{2} to M_{4} with costs 16 and resulting in the least total costs of 68

ELECTRICITY DISTRIBUTION EXAMPLE

We consider an electric utility system in which
3 power plants are used to supply the electricity
demand of 4 cities

The supplies available from the 3 plants are given

The demands of the 4 cities are specified
The costs of supply per $10^{6} \mathrm{kWh}$ are given

ELECTRICITY COSTS

		city				supplies $\left(10^{6} \mathrm{kWh}\right)$
		1	2	3	4	
plant	1					35
	2					50
		9	12	13	7	
	3					40
		14	9	16	5	
demands$\left(10^{6} \mathrm{kWh}\right)$		45	20	30	30	125

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ELECTRICITY COSTS

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ELECTRICITY ALLOCATION EXAMPLE

\square We note that

$$
\sum_{i=1}^{3} a_{i}=\sum_{j=1}^{4} b_{j}
$$

and so we have a balanced transportation
problem
\square We find a basic feasible solution using the least-cost rule

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

		city				supplies ($10^{6} \mathrm{kWh}$)
		1	2	3	4	
plant	1	8	6	10	${ }^{0} 9$	35
	2	9	12	13		50
	3	14	9	16		10
$\begin{gathered} \hline \text { demands } \\ \left(10^{6} \mathrm{kWh}\right) \\ \hline \end{gathered}$		45	20	30	30	125

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

And we set

$$
\begin{aligned}
x_{34} & =30 \\
x_{14} & =0 \\
x_{24} & =0
\end{aligned}
$$

\square We compute the remaining supply at plant 3 and remove column corresponding to city $\mathbf{4}$ from further consideration
\square We continue with the reduced system

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

and so we set

$$
\begin{aligned}
& x_{12}=20 \\
& x_{22}=0 \\
& x_{32}=0
\end{aligned}
$$

\square We recompute the supply remaining at plant 1 and remove column corresponding to city 2
\square The new reduced system obtains

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

		city		$\begin{gathered} \text { supplies } \\ \left(10^{6} \mathrm{kWh}\right) \end{gathered}$
		1	3	
plant	1	15	0	15
		8	10	
	2			50
		9	13	
	3			10
		14	16	
demands$\left(10^{6} \mathrm{kWh}\right)$		30	30	

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

and therefore we set

$$
\begin{aligned}
x_{11} & =15 \\
x_{13} & =0
\end{aligned}
$$

and remove the row corresponding to plant 1 from
further consideration since its supply is exhausted
\square The operation is repeated on the reduced system

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

and therefore we set

$$
\begin{aligned}
& x_{21}=30 \\
& x_{31}=0
\end{aligned}
$$

and remove the column corresponding to city 1
from further consideration
\square We are finally left with

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

		city		$\begin{gathered} \text { supplies } \\ \left(10^{6} \mathrm{kWh}\right) \end{gathered}$
		3		
plant	2	20		20
	3	10		10
demands$\left(10^{6} k W h\right)$		30		

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

which allows us to set

$$
\begin{aligned}
x_{23} & =20 \\
x_{33} & =10
\end{aligned}
$$

\square The basic feasible solution has the costs
$Z=30 \cdot 5+20 \cdot 6+15 \cdot 8+30 \cdot 9+20 \cdot 13+10 \cdot 16=1,080$
\square We improve this solution by using the u-v scheme
\square The first tableau corresponding to the initial basic feasible solution is:

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

		city				supplies ($10^{6} \mathrm{kWh}$)
		1	2	3	4	
$\frac{\tilde{E}}{2}$	1	$\stackrel{(15)}{8}$	(20) ${ }_{6}$			35
	2	(30) 9		20 13		50
	3			10	30	40
$\begin{gathered} \mathrm{dem} \\ \left(10^{6}\right. \end{gathered}$		45	20	30	30	

STP NUMERICAL EXAMPLE

\square We compute, the possible improvements at each nonbasic variable:

$$
\begin{gathered}
\tilde{c}_{31}=c_{31}-\left(u_{3}+v_{1}\right)=14-(4+8)=2 \\
\tilde{c}_{22}=c_{22}-\left(u_{2}+v_{2}\right)=12-(1+6)=5 \\
\tilde{c}_{32}=c_{32}-\left(u_{3}+v_{2}\right)=9-(4+6)=-1 \\
\tilde{c}_{13}=c_{13}-\left(u_{1}+v_{3}\right)=10-(0+12)=-2 \\
\tilde{c}_{14}=c_{14}-\left(u_{1}+v_{4}\right)=9-(0+1)=\mathbf{8} \\
\tilde{c}_{24}=c_{24}-\left(u_{2}+v_{4}\right)=7-(1+1)=5 \\
\text { improvement possible } \\
\text { better improvement }
\end{gathered}
$$

STP NUMERICAL EXAMPLE

\square We bring x_{13} into the basis and determine the
value of θ using the tableau structure
\square From the tableau we conclude that

$$
\theta=\min \{15,20\}=15
$$

and therefore x_{11} leaves the basis to determine
the adjacent basic feasible solution given in the table

STP NUMERICAL EXAMPLE

plants cities	1	2	3	4	a_{i}
1	$15-\theta$	20	θ		35
2	$30+\theta$		$20-\theta$		50
3			10	30	40
b_{j}	45	20	30	30	

STP NUMERICAL EXAMPLE

\square The adjacent basic feasible solution is

$$
x_{21}=45, x_{12}=20, x_{13}=15, x_{23}=5, x_{33}=10, x_{34}=30
$$

and the new value of Z is

$$
\begin{aligned}
Z & =20 \cdot 6+15 \cdot 10+45 \cdot 9+5 \cdot 13+10 \cdot 16+30 \cdot 5 \\
& =1050<1080
\end{aligned}
$$

\square We again pursue a $u-v$ improvement strategy by starting with the tableau

STP NUMERICAL EXAMPLE

	$v_{1}=6$	$v_{2}=6$	$v_{3}=10$	$v_{4}=-1$	supplies
$u_{1}=0$		(20)	(15)		35
$u_{2}=3$	(45)		(5)		50
	9		13		
$u_{3}=6$			10	30	40
			16	5	
demands	45	20	30	30	

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STANDARD TRANSPORTATION EXAMPLE

\square The complementary slackness conditions obtain the possible improvements

$$
\begin{aligned}
& \tilde{c}_{11}=c_{11}-\left(u_{1}+v_{1}\right)=8-(0+6)= \\
& \tilde{c}_{31}=c_{31}-\left(u_{3}+v_{1}\right)=14-(6+6)=2 \\
& \tilde{c}_{22}=c_{22}-\left(u_{2}+v_{2}\right)=12-(3+6)= \\
& \tilde{c}_{32}=c_{32}-\left(u_{3}+v_{2}\right)=9-(6+6) \\
& \tilde{c}_{14}=c_{14}-\left(u_{1}+v_{4}\right)=9 \\
& \tilde{c}_{24}=c_{24}-\left(u_{2}+v_{4}\right)=7-3 \\
& \text { only possible improvement } \\
& \text { We bring } x_{32} \text { into the basis and with its value } \theta \\
& \text { determined from }
\end{aligned}
$$

STP NUMERICAL EXAMPLE

cities plants $^{\text {pla }}$	1	2	3	4	a_{i}
1		$20-\theta$	$15+\theta$		35
2	45		5		50
3		θ	$10-\theta$	30	40
b_{j}	45	20	30	30	

STP NUMERICAL EXAMPLE

and so

$$
\theta=\min \{10,20\}=10
$$

\square The adjacent basic feasible solution is, then,

$$
\begin{array}{lll}
x_{21}=45 & x_{12}=10 & x_{32}=10 \\
x_{13}=25 & x_{23}=5 & x_{34}=30
\end{array}
$$

and the value of Z becomes
$Z=45 \cdot 9+10 \cdot 6+10 \cdot 9+25 \cdot 10+5 \cdot 13+30 \cdot 5=1,020$
You are asked to prove, using complementary slackness conditions, that this is the optimum

NONSTANDARD TRANSPORTATION PROBLEM

\square The nonstandard transportation problem arises when supply and demand are unbalanced: either supply exceeds demand or vice versa
\square We solve by transforming the nonstandard problem into a standard one
\square The approach is to create a fictitious entity - a market to absorb the surplus supply or a warehouse for the supply deficit - and solve the problem with the fictitious entity as a balanced problem

NONSTANDARD TRANSPORTATION PROBLEM

For the case

$$
\sum_{i=1}^{m} a_{i}>\sum_{i=1}^{n} b_{j}
$$

supply demand
we create the fictitious market M_{n+1} to absorb all the excess supply $\left(\sum_{i=1}^{m} a_{i}-\sum_{j=1}^{n} b_{j}\right)$; we set $c_{i, n+1}=0$, $\forall i=1,2, \ldots, m$ since M_{n+1} is fictitious
\square The problem is then in standard form with $j=1,2$, ..., n, n+1, for the augmented number of markets

NONSTANDARD TRANSPORTATION PROBLEM

For the case

$$
\sum_{j=1}^{n} b_{j}>\sum_{i=1}^{m} a_{i}
$$

demand supply

the problem is not, in effect, feasible since all the demands cannot be met and therefore the leastcost shipping schedule is that which will supply as much as possible of the demands of the markets at the lowest cost

NONSTANDARD TRANSPORTATION PROBLEM

For the excess demand case, we introduce the
fictitious warehouse W_{m+1} to supply the shortage
$\left[\sum_{j=1}^{n} b_{j}-\sum_{i=1}^{m} a_{i}\right]$ and we set $c_{m+1, j}=0, j=1,2, \ldots, n$
\square The problem is in standard form with $i=1, \ldots$,
$m+1$ (number of warehouses augmented by 1)

NONSTANDARD TRANSPORTATION PROBLEM

Note that the variable $x_{m+1, j}$ is the shortage at market \boldsymbol{j} and is the shortfall in the demand $\boldsymbol{b}_{\boldsymbol{j}}$ experienced by each market M_{j} due to inadequacy of the supplies $j=1,2, \ldots, n$
\square For each market $\boldsymbol{j}, \boldsymbol{x}_{m+1, j}$ provides the measure of the infeasibility of the problem

EXAMPLE: CANNING OPERATIONS SCHEDULING

\square This problem is concerned with the scheduling the purchases of 2 plants $-A$ and B - of the raw supplies from 3 growers with given availability / price

grower	availability (ton)	price (\$ / ton)
Smith	200	10
Jones	300	9
Richard	400	8

EXAMPLE: CANNING OPERATIONS SCHEDULING

The shipping costs in $\$ /$ ton are given by

to	plant	
	A	B
Smith	2	2.5
Jones	1	1.5
Richard	5	3

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: CANNING OPERATIONS SCHEDULING

\square The plants' capacity limits and labor costs are

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: CANNING OPERATIONS SCHEDULING

\square The competitive selling price for canned goods is 50 \$ / ton and the company can sell all it produces
\square The problem is to determine the purchase schedule that produces the maximum profits
\square Note that this is an unbalanced problem since

$$
\begin{array}{ll}
\text { supply } & =200+300+400
\end{array}=900 \text { tons }, ~=1000 \text { tons }>900 \text { tons }
$$

\square The decision variables are the amounts bought from each grower and shipped to each plant

EXAMPLE: CANNING OPERATIONS SCHEDULING

The objective is formulated as

$$
\begin{aligned}
\max Z & =[\underbrace{50-25-10-2}_{13}] x_{S A}+[\underbrace{50-25-9-1}_{15}] x_{J A} \\
& +[\underbrace{50-25-8-5}_{12}] x_{R A}+[\underbrace{50-20-10-2.5}_{17.5}] x_{S B} \\
& +[\underbrace{50-20-9-1.5}_{19.5}] x_{J B}+[\underbrace{50-20-8-3}_{19}] x_{R B}
\end{aligned}
$$

EXAMPLE: CANNING OPERATIONS SCHEDULING

\square The supply constraints are

$$
\begin{aligned}
& \boldsymbol{x}_{S A}+\boldsymbol{x}_{S B} \leq 200 \\
& \boldsymbol{x}_{J A}+\boldsymbol{x}_{J B} \leq 300 \\
& \boldsymbol{x}_{\boldsymbol{R A}}+\boldsymbol{x}_{\boldsymbol{R B}} \leq 400
\end{aligned}
$$

] The demand constraints are

$$
\begin{aligned}
& x_{S A}+x_{J A}+x_{R A} \leq 450 \\
& x_{S B}+x_{J A}+x_{R B} \leq 550
\end{aligned}
$$

EXAMPLE: CANNING OPERATIONS SCHEDULING

\square Clearly, all decision variables are nonnegative
\square The unbalanced nature of the problem requires the
introduction of a fictitious grower F, who is able to
supply 100 tons of the supply shortage; the addition
of F allows the nonstandard problem to be stated as
a standard transportation problem
\square We set up the STP tableau

EXAMPLE: CANNING OPERATIONS SCHEDULING

grower i	A	B	supply
S	13	17.5	200
J	15	19.5	300
R	12	19	400
F	0	0	100
demand	450	550	1,000

EXAMPLE: CANNING OPERATIONS SCHEDULING

\square In this problem, the objective is a maximization rather than a minimization

We therefore recast the "mechanics" of the u-v
scheme for the maximization problem
\square As a homework exercise, show that the duality complementary slackness conditions allow us to change the $u-v$ algorithm in the following way:

EXAMPLE: CANNING OPERATIONS SCHEDULING

O the selection of the nonbasic variable $x_{i j}$ to enter the basis is from those $x_{i j}$ whose corresponding

$$
c_{i j}>u_{i}+v_{j}
$$

and we focus on and evaluate all $\tilde{c}_{i j}>0$ for which $x_{i j}$ is a candidate to enter the basis

O we pick $x_{p q}$ corresponding to

$$
\tilde{c}_{p q}=\max _{\substack{\text { p } \\ \text { is } \boldsymbol{x}_{\bar{q} \bar{q}} \\ \text { and } \tilde{c}_{\bar{p} \bar{q}}>\boldsymbol{x}}}\left\{\tilde{\boldsymbol{c}}_{\bar{p} \bar{q}}\right\}
$$

EXAMPLE SOLUTION

plant j grower i	A	B	supply
S	200	0	200
	13	17.5	
J	250	50	300
	15	19.5	
\boldsymbol{R}	$0 \quad 12$	$400 \quad 19$	400
F	0	100	100
	0	0	
demand	450	550	

EXAMPLE SOLUTION

\square We construct the $u-v$ relations for this solution

$$
\begin{array}{cc}
u_{1}+v_{1}=13 & u_{2}+v_{2}=19.5 \\
u_{2}+v_{1}=15 & u_{3}+v_{2}=19 \\
& u_{4}+v_{2}=0
\end{array}
$$

\square We arbitrarily set $u_{1}=0$ and compute

$$
v_{1}=13, u_{2}=2, v_{2}=17.5, u_{3}=1.5, u_{4}=-17.5
$$

EXAMPLE SOLUTION

\square We evaluate the $\tilde{c}_{i j}$ corresponding to the nonbasic variables

$$
\begin{gathered}
\tilde{c}_{31}=c_{31}-\left(u_{3}+v_{1}\right)=12-(1.5+13)=-2.5 \\
\tilde{c}_{41}=c_{41}-\left(u_{4}+v_{1}\right)=0-(-17.5+13)=4.5 \\
\tilde{c}_{12}=c_{12}-\left(u_{1}+v_{2}\right)=17.5-(0+17.5)=0 \\
\text { single possible improvement }
\end{gathered}
$$

Thus, x_{41} enters the basis and we determine θ

EXAMPLE SOLUTION

	A	B	supply
S	200		200
	13		
J	$250-\theta$	$\begin{array}{r} \hline 50+\theta \\ \quad 19.5 \\ \hline \end{array}$	300
	15		
\boldsymbol{R}		400	400
		19	
F	θ	100- θ	100
	0	0	
demand	450	550	

EXAMPLE SOLUTION

It follows that

$$
\theta=\min \{250,100\}=100
$$

and so the adjacent basic feasible solution is
$x_{11}=200, x_{21}=150, x_{41}=100, x_{22}=150, x_{32}=400$
\square We repeat the $u-v$ procedure with the new basic variables and solve

EXAMPLE SOLUTION

$$
\begin{array}{ll}
u_{1}+v_{1}=13 & u_{2}+v_{2}=19.5 \\
u_{2}+v_{1}=15 & u_{3}+v_{2}=19 \\
& u_{4}+v_{1}=0
\end{array}
$$

\square We solve by arbitrarily setting $u_{1}=0$ and obtain

$$
v_{1}=13, u_{2}=2, v_{2}=17.5, u_{3}=1.5, u_{4}=-13
$$

EXAMPLE SOLUTION

\square We compute the $\tilde{c}_{i j}$ for the nonbasic variables

$$
\begin{aligned}
& \tilde{c}_{12}=17.5-(0+17.5)=0 \\
& \tilde{c}_{31}=12-(1.5+13)=-2.5 \\
& \tilde{c}_{42}=0-(-13+17.5)=-4.5
\end{aligned}
$$

EXAMPLE SOLUTION

\square Since each $\tilde{c}_{i j}$ is ≤ 0, no improvement in the
maximization is possible and so the maximum
profits are

$$
\begin{aligned}
Z & =(200) 13+(150) 15+(100) 0+(150) 19.5+(400) 19 \\
& =15,375 \$
\end{aligned}
$$

SCHEDULING PROBLEM AS A

 STANDARD TRANSPORTATION PROBLEM\square The problem is concerned with the weekly production scheduling over a 4 - week period

O production costs for each item

first two weeks	$\$ 10$
last two weeks	$\$ 15$

O demands that need to be met are

week	1	2	3	4
demand	300	700	900	800

SCHEDULING PROBLEM AS A

 STANDARD TRANSPORTATION PROBLEMO weekly plant capacity is 700
O overtime is possible for weeks 2 and 3 with

- the production of additional 200 units
- additional cost per unit of \$5

O \$ 3 for weekly storage of unsold production
O the objective is to minimize the total costs for the 4-week schedule
\square The decision variables are
$x_{i j}=$ production in week \boldsymbol{i} for use in week \boldsymbol{j} market

SCHEDULING PROBLEM AS A STANDARD TRANSPORTATION PROBLEM

ASSIGNMENT PROBLEM

\square We are given
n machines
n jobs

$$
c_{i j}=\text { cost of doing job } j \text { on machine } i
$$

$$
c_{i j}=M \text { if job } j \text { cannot be done on machine } i
$$

each machine can only do one job and we wish to determine the optimal match, i.e., the assignment with the lowest total costs of doing each job \boldsymbol{j} on the n available machines

ASSIGNMENT PROBLEM

The brute force approach is simply enumeration:
consider $n=10$ and there are $3,628,800$ possible
choices!
\square We can, however, introduce categorical decision
variables

$$
x_{i j}= \begin{cases}1 & j o b j \text { is assigned to machine } i \\ 0 & \text { otherwise }\end{cases}
$$

ASSIGNMENT PROBLEM

and the problem constraints can be stated as

$\sum_{j=1}^{n} x_{i j}=1 \quad \forall i$ each machine does exactly 1 job
$\sum_{i=1}^{n} x_{i j}=1 \quad \forall j$ each job is assigned to 1 machine
The objective, then, is

$$
\min Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

ASSIGNMENT PROBLEM

\square This assignment problem is an STP with

$$
\begin{gathered}
a_{i}=1 \quad \forall i \\
b_{j}=1 \quad \forall j \\
\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{n} b_{j}
\end{gathered}
$$

NONSTANDARD ASSIGNMENT PROBLEM

\square Suppose we have m machines and n jobs with
$m \neq n$
\square We may convert this into an equivalent standard assignment problem with equal number of machines and jobs
\square The conversion requires the introduction of either fictitious jobs or fictitious machines

NONSTANDARD ASSIGNMENT PROBLEM

In the case $m>n$:
we create ($m-n$) fictitious jobs and we have
m machines and $n+m-n=m$ jobs; we assign
the machinery costs for the fictitious goods to
be 0 : note that there is no change in the object-
ive function since a fictitious job assigned to a
machine is, in effect, a machine that remains idlle

NONSTANDARD ASSIGNMENT PROBLEM

\square For the case $n>m$:
we create ($n-m$) fictitious machines with
machine costs of 0 and the solution
obtained has the ($n-m$) jobs that cannot be
done due to lack of machines

NONSTANDARD ASSIGNMENT PROBLEM

\square In principle, any assignment problem may be solved using the transportation problem technique; in practice, this approach is not practical since there exists degeneracy in every basic feasible solution
\square We note that in the standard assignment problem for m machines with $m=n$, there are exactly $m x_{i j}$ that are 1 (nonzero) but every basic feasible solution of the transportation problem has $(2 m-1)$ basic variables of which $(m-1)$ have the value zero

[^0]: ECE 307© 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

